
a v e n u e . q u a r k T U T O R I A L

avenue.quark Tutorial

Table of Contents

Introduction 3

Preparing to Use avenue.quark 5

Using Rule-Based Tagging 6

Viewing Extracted XML Content 13

Adding a Rule to a Tagging Rule Set 17

Combining Text Boxes Into a Sequence 22

Tagging with Sequences and a New Rule 25

Tagging a Picture and Caption 27

2

Table of Contents

avenue.quark Tutorial

Introduction

In this tutorial, you will:

.1 Open a sample QuarkXPress Passport™ document.

.2 Use avenue.quark™, along with a supplied DTD (Document Type
Definition), to tag most of the content in the sample document.

.3 Save the tagged content in XML (Extensible Markup Language) format.

.4 View the content in a Web browser using Cascading Style Sheets
(Windows only).

.5 Streamline the tagging process by first updating the tagging rule set to
tag more types of content, and then combining several text boxes into a

sequence that can be tagged as a whole.

.6 Tag a picture and caption.

3

Introduction

avenue.quark Tutorial

The advantage of avenue.quark is that it lets you tag content that is currently
stored in QuarkXPress Passport format, export that content in industry-standard
XML format, and then reuse that content in a variety of ways. For example, in
this tutorial we will take our original sample document (on the left below),
export its content in XML format using avenue.quark, and then view that con-
tent in a Web browser using two completely different sets of CSS (Cascading
Style Sheet) styles (on the right below).

QuarkXPress Passport content saved as XML and viewed in a Web browser
with CSS

G For an in-depth introduction to XML, DTDs, and avenue.quark, see
Chapter 1, “avenue.quark Basics,” in “A Guide to avenue.quark”

(“Guide to avenue.quark.pdf”). For more information about tagging rule
sets, see Chapter 5, “Tagging Rule Sets,” in the same file.

Content in
QuarkXPress format

Content displayed in
Web browsersContent in

XML format

CSS Styles

CSS Styles

4

Introduction

avenue.quark Tutorial

Preparing to Use avenue.quark

Before you begin this tutorial, please take the following steps:

.1 Verify that you have QuarkXPress Passport 4.04 or later.

.2 Verify that the avenue.quark QuarkXTensions™ module and the Item
Sequence QuarkXTensions module are in the “XTension” folder in

your QuarkXPress Passport application folder. For installation instructions,
see the avenue.quark installation instruction booklet or the “Installation
Instructions.pdf” file.

.3 Verify that the file named “WhitePaper - English.xmt” is in the
“Templates” folder in your QuarkXPress Passport application folder.

.4 Copy the folder “avenue.quark Tutorial” to the desktop of your computer
so you can get to it quickly and easily.

You may want to print this tutorial, so that you can easily refer to it while
you are going through the steps.

5

Preparing to Use avenue.quark

avenue.quark Tutorial

Using Rule-Based Tagging

This section shows you how to use a feature called rule-based tagging to automate
much of the XML tagging process. Rule-based tagging relies on a tagging rule set,
which is a list of guidelines for automatically tagging QuarkXPress Passport con-
tent based on the content’s QuarkXPress Passport style sheets and other format-
ting attributes.

To use a previously created tagging rule set to tag the contents of a text box in
a sample document:

.1 Launch QuarkXPress Passport.

.2 Choose File & Open; locate the file named “SampleDoc.qxt” in the
“avenue.quark Tutorial” folder on your desktop.

.3 Choose File & New & XML to create a new XML document. The New
XML dialog box is displayed.

New XML dialog box

6

Using Rule-Based Tagging

avenue.quark Tutorial

G If the XML item is not shown on the File & New submenu, avenue.quark
may not be correctly installed. See “Installation Instructions.pdf” for

instructions on how to install the software.

.4 Select WhitePaper - English.xmt in the Template list to indicate that
you want to base the new XML document on the template named

“WhitePaper - English.xmt.” This template specifies that you want to use a
DTD named “WhitePaper.dtd”, with <whitePaper> as the root element, and that
you want to use a preconfigured tagging rule set named “White Paper Rules.”

H What is a DTD? A DTD, or Document Type Definition, defines a set of
element types (tag definitions) and structure rules for a particular type of

document. For example, a DTD for a news story might specify that each story
must have exactly one section of text tagged as a <headline> element, that each
story may or may not have a <byline> element, that each illustration must be
immediately followed by exactly one <caption> element, and so forth. For more
information about DTDs, see Chapter 1, “avenue.quark Basics,” in “Guide to
avenue.quark.pdf.”

7

Using Rule-Based Tagging

avenue.quark Tutorial

.5 Click OK. The XML Workspace palette is displayed, and any mandatory
elements in the WhitePaper DTD (in this case, <whitePaper>, <head_L1>,

and at least one <body>) are automatically added to the XML Tree list.

XML Workspace palette

8

Using Rule-Based Tagging

avenue.quark Tutorial

.6 Select the text box that begins with “A lot of organizations have
content....” Then press C (Mac OS) or Ctrl (Windows) and drag the text

box to the <body> element in the XML Tree list. (Element names are displayed as
bold names in the XML Tree list, like this: body.) Avenue.quark automatically
tags the content in the text box, creating new elements as necessary.

Rule-based tagging

H What just happened? Avenue.quark just used the “White Paper Rules”
tagging rule set to tag the content in the text box you dragged onto the

<body> element. You’ll learn more about tagging rule sets in the “Adding a
Rule to a Tagging Rule Set” section of this tutorial.

H Wait, it didn’t work! If the Choose Rule/Position dialog box displays
when you drag the text box to the <body> element, click Stop. Then

choose Edit & Preferences & avenue.quark; make sure the Always insert
repeating elements at the end of the current branch box is checked; click
OK; and then close the XML Workspace palette and go back to Step 3.

9

Using Rule-Based Tagging

avenue.quark Tutorial

If something else unexpected happened when you dragged the text box onto
the <body> element in the XML Tree list, don’t worry about it. Just close the
XML Workspace palette and go back to Step 3. You may want to make sure
the “WhitePaper - English.xmt” file from the “avenue.quark Tutorial” folder is
in the “Templates” folder inside your QuarkXPress Passport application folder.

.7 Scroll through the XML Tree list (in the XML Workspace palette) and
note how the white paper’s content has been tagged with the appropriate

element types. Subheads have been tagged as <head_L2> elements, and body
text paragraphs have been tagged as <parag> elements. You can see the full
contents of an element by clicking the element’s name and looking at the
Content field.

XML Workspace palette with Content field

10

Using Rule-Based Tagging

avenue.quark Tutorial

G Four things that didn’t get tagged are the headline (“avenue.quark White
Paper”), the picture, the picture’s caption, and the legal text that makes

up the last two paragraphs on page two. You’ll learn how to tag these pieces
just as easily later in this tutorial.

.8 Click the Preview XML button at the top of the XML Workspace
palette to display the Preview XML dialog box. This lets you see what

the exported XML file will look like.

Preview XML button

Preview XML dialog box

11

Using Rule-Based Tagging

avenue.quark Tutorial

H What am I looking at? The Preview XML dialog box shows you what
your content looks like in XML format. Each chunk of information in an

XML file is bracketed by tags that describe what that content is. For example,
near the top of the screen shot above, you can see that the first paragraph in
the document has been placed between an opening <parag> tag and a closing
</parag> tag. This makes it easy for a wide variety of applications to identify
the body copy and handle it appropriately — for example, by displaying it in
a 12-point, serif font.

.9 Click OK to close the Preview XML dialog box.

.10 Click the Save button at the top of the XML Workspace palette, and save
the document in the “avenue.quark Tutorial” folder as “MyDoc.xml.”

(Leave the Encoding pop-up menu set to UTF8 and check Save XML as
Standalone.) You will view this file in a Web browser in the next section,
“Viewing Extracted XML Content — Windows only.”

Save button

.11 Click the close button on the XML Workspace palette to close the
XML document.

12

Using Rule-Based Tagging

avenue.quark Tutorial

Viewing Extracted XML Content

Once you’ve extracted content from a QuarkXPress Passport document and
stored it in an XML file, you can do a wide variety of things with that con-
tent. For example, you can use Cascading Style Sheets (CSS) to view it in a
Web browser as a formatted document. In this section, we’ll first view a cou-
ple of sample XML files with CSS formatting, then show you how you can
add CSS formatting to the XML document you saved in the previous section.

H What is CSS? CSS is a way of applying style to tagged content. It was
developed for use with HTML, but can be used with XML as well. It’s

useful because it lets you change the formatting of a large number of docu-
ments by updating a single CSS file.

G At the time of this writing, this section works only with Microsoft Internet
Explorer 5.0, which is available only for Windows. By the time you read

this, though, other Web browsers (such as Internet Explorer 5.0 for Mac OS) may
be able to display XML with CSS styles. If you do not have a browser that can
display XML with CSS styles, please skip to the next section, “Adding a Rule to
a Tagging Rule Set.”

Viewing an XML file with CSS style sheets

So that you can easily see what an XML file looks like when viewed with CSS,
we’ve included two sample XML files with this tutorial. These files were gener-
ated from the same sample document you worked with in the previous section,
and they’re identical except for one thing: Each uses a different CSS file to
provide its presentation. To view and compare the files:

.1 Launch a Web browser that can display XML with CSS styles, such as
Microsoft Internet Explorer 5.x.

13

Viewing Extracted XML Content

avenue.quark Tutorial

.2 Open the sample file named “WhitePaper1.xml.” The browser displays
the XML file using the CSS styles in the file named “wp.css.” (Your

exported XML file should appear similar when you view it with this CSS file
in the next subsection.)

The XML version of the white paper, displayed using the CSS styles in “wp.css”

.3 Open the sample file named “WhitePaper2.xml” in the Web browser.
The browser displays the same XML content, but this time using the

CSS styles in the file named “wp2.css.” (Your exported XML file should appear
similar when you view it with this CSS file in the next subsection.)

The same XML file, displayed using the CSS styles in “wp2.css”

14

Viewing Extracted XML Content

avenue.quark Tutorial

Viewing your XML file with CSS styles

To view the XML file you created in the first section:

.1 Using a text editor or a word processor other than Microsoft Word, open
“MyDoc.xml” (the document you saved in Step 10 of the first section).

G Why not use Word? Some versions of Microsoft Word will automatically
replace two hyphens in a row with an em dash. If possible, use a “plain

text” word processor such as SimpleText (Mac OS) or WordPad (Windows). To
open the file in WordPad: Launch WordPad; choose File & Open; choose All
Documents from the Files of type pop-up menu; select “MyDoc.xml”; and
then click Open.

.2 Add the following line, immediately after the first line of the XML file.
This line indicates that the XML document should be viewed with the

style sheet named “wp.css.” Make sure you copy the line exactly.

<?xml-stylesheet type="text/css" href="wp.css"?>

.3 Add the following line, immediately after the line you just added. This
line indicates the beginning of a comment; we’ll use it to “comment-out”

the DTD embedded in the file. This is necessary because some Web browsers
have trouble reading internal DTDs.

<!--

.4 Add the following line, immediately after the line that reads “]>”. This
line indicates the end of the commented-out DTD.

-->

.5 Save the file in ASCII (plain text) format. Make sure you don’t change
the document’s name.

15

Viewing Extracted XML Content

avenue.quark Tutorial

.6 Make sure there is a copy of the “wp.css” file (provided with the
avenue.quark Tutorial) in the same folder as “MyDoc.xml.”

.7 Open “MyDoc.xml” in your Web browser. The CSS styles defined in
“wp.css” are applied to the XML.

.8 To see how the XML file looks when viewed with the CSS styles defined
in “wp2.css,” reopen it in your text editor or word processor and change

“wp.css” to “wp2.css,” like so:

<?xml-stylesheet type="text/css" href="wwpp22..ccssss"?>

.9 Save the file in ASCII (plain text) format. Make sure you don’t change
the document’s name.

.10 Make sure there is a copy of the “wp2.css” file (provided with the
avenue.quark Tutorial) in the same folder as “MyDoc.xml.”

.11 Click the Web browser’s refresh button to reload the XML file. The CSS
styles defined in “wp2.css” are applied to the XML. Note the difference;

see how the same XML file can have a radically different appearance depending
on how it’s presented.

.12 Close your Web browser and your text editor or word processor.

G If you look at the WhitePaper DTD in a text editor, and you’re some-
what familiar with how DTDs are constructed, you may notice that the

<whitePaper> element has an attribute named “xmlns:HTML” with a fixed value
of “http://www.w3.org/TR/REC-html40.” This attribute is automatically included
in all XML files based on this DTD. Its purpose is to alert Microsoft Internet
Explorer version 5.0 or later that the document uses the HTML namespace. Since
the document uses the HTML namespace, the tag <HTML:img> is interpreted as
an HTML tag; thus, you’re able to display images referenced by the XML.

16

Viewing Extracted XML Content

avenue.quark Tutorial

Adding a Rule to a Tagging Rule Set

In the first section, we used an existing tagging rule set to automatically tag
most of a sample document. However, the legal text at the end of the document
was not tagged. One of the reasons is because the supplied tagging rule set does
not contain a rule to deal with text that uses the “Legal Text” paragraph style
sheet. This section shows you how to solve this problem by adding a new rule.

G When this tutorial mentions “paragraph style sheets,” it’s referring to
QuarkXPress Passport style sheets, as opposed to CSS styles.

To add a new rule to the “White Paper Rules” tagging rule set:

.1 Launch QuarkXPress Passport. If QuarkXPress Passport is already run-
ning, close any open XML Workspace palettes.

.2 Open “SampleDoc.qxt” if it is not already open.

.3 Choose File & New & XML to create a new XML document. The
New XML dialog box is displayed. Select WhitePaper - English in the

Template list, then click OK to display the XML Workspace palette.

17

Adding a Rule to a Tagging Rule Set

avenue.quark Tutorial

.4 Choose Edit & Tagging Rules. The Tagging Rules dialog box is displayed.

Tagging Rules dialog box

18

Adding a Rule to a Tagging Rule Set

avenue.quark Tutorial

.5 Select the tagging rule set named “White Paper Rules.” (This is the tagging
rule set we used in the first section.) Then click Edit to edit this tagging

rule set using the Edit Tagging Rules dialog box.

Edit Tagging Rules dialog box

.6 The list on the left side of the dialog box displays the WhitePaper DTD
as a hierarchy. You can display and hide the contents of container ele-

ments and attributes by clicking the and icons (Mac OS) or the and
icons (Windows). To view the rules that make up this tagging rule set, click
the element names “head_L1,” “parag,” “head_L2,” and “head_L3” in this list.
The rules that apply to each element type are displayed in the Rules list on the
upper right.

19

Adding a Rule to a Tagging Rule Set

avenue.quark Tutorial

H What do tagging rules do? Tagging rules let you tell avenue.quark that
you want content that is formatted in a particular way to be tagged with

a particular element type. For example, the rule displayed above indicates that
paragraphs that use the “Body Text” paragraph style sheet should be tagged as
<parag> elements.

.7 Click the element named <parag_legal> in the list on the left, and then
click Add Rule to create a new rule for this element type. This indicates

that you want to create a new tagging rule for the <parag_legal> element type.

H Why “parag_legal”? XML tags can be named as descriptively as you like
(within certain limitations). In this DTD, a <parag> element is designed

to contain a paragraph, and a <parag_legal> element is designed to contain a
paragraph of legal information.

20

Adding a Rule to a Tagging Rule Set

avenue.quark Tutorial

.8 Check the Style Sheet check box and choose Legal Text from the Style
Sheet pop-up menu. Check the New tag for each paragraph check box.

This indicates that you want the <parag_legal> element type to be applied to
paragraphs that use the “Legal Text” paragraph style sheet and that you want
each paragraph that uses the “Legal Text” style sheet to be tagged as a separate
element. Note that the rule in the Rules list (at the upper right) updates to
display your selections.

Edit Tagging Rules dialog box with a new rule for the <parag_legal> element type

.9 Click OK to save the changes you’ve made to the tagging rule set named
“White Paper Rules.”

.10 Click Save to close the Tagging Rules dialog box.

G Make sure you leave the active XML Workspace palette and the active
QuarkXPress Passport document open before proceeding — you’ll need

them for the following sections.

21

Adding a Rule to a Tagging Rule Set

avenue.quark Tutorial

Combining Text Boxes Into a Sequence

You’ve already seen that avenue.quark can help you to quickly and easily tag
and extract the contents of a single text box. Now we’ll make the tagging
process even easier by combining the series of text boxes that make up the
body of the white paper into a sequence, and then tagging that sequence as a
single unit.

G Sequences are a feature of Item Sequence QuarkXTensions software,
which ships with avenue.quark. To use sequences, you must have Item

Sequence QuarkXTensions software installed in the “XTension” folder inside
your QuarkXPress Passport application folder.

To combine a series of text boxes into a sequence:

.1 Choose View & Show Sequences to display the Sequences palette.

The Sequences palette lets you create named sequences of text boxes.

.2 Click the New Sequence button to create a new sequence.

New Sequence button

22

Combining Text Boxes Into a Sequence

avenue.quark Tutorial

.3 Click the Edit Name button to display the Edit Name dialog box. Type
White Paper in the Name field and then click OK.

Edit Name button

The Edit Name dialog box lets you rename the selected sequence.

.4 Click the text box containing the headline (“avenue.quark White
Paper”) to select it.

.5 Click the Add Item button to add the text box to the “White Paper”
sequence.

Add Item button

.6 Select the text box that begins with “A lot of organizations have
content....” Then click the Add Item button to add it to the sequence,

right after the headline box.

23

Combining Text Boxes Into a Sequence

avenue.quark Tutorial

.7 Go to page 2 and select the text box at the bottom right of the page. This
text box contains the legal text for the document. Click the Add Item

button to add this box to the sequence, right after the box that contains the
bulk of the white paper’s content.

The Sequences palette displays a sequence as a list of named boxes.

The text boxes that make up the white paper have now been combined, in
the proper order, into a single sequence named “White Paper.” This makes it
easier for you to deal with them as a unit. In the next section, we’ll export the
sequence in XML format.

G Make sure you leave the Sequences palette, the active XML Workspace
palette, and the active QuarkXPress Passport document open before pro-

ceeding — you’ll need both for the next section.

24

Combining Text Boxes Into a Sequence

avenue.quark Tutorial

Tagging with Sequences and a New Rule

Now that you’ve added a new tagging rule for the legal text at the end of the
white paper and combined all of the text boxes that make up the white paper
into a single sequence, you’ll see how easy it is to tag all of the important text
in the document in one pass.

To tag the “White Paper” sequence:

.1 Select the sequence named “White Paper.”

.2 Press C (Mac OS) or Ctrl (Windows) and drag the sequence onto the
<whitePaper> element in the XML Workspace palette. Avenue.quark

automatically tags the content in all three text boxes, creating new elements
as necessary.

H Wait, it didn’t work! If something unexpected happened when you
dragged the sequence onto the <whitePaper> element in the XML Tree

list, don’t worry about it. Just close the XML Workspace palette and go back
to Step 1.

25

Tagging with Sequences and a New Rule

avenue.quark Tutorial

.3 Scroll through the XML Tree list until you get to the bottom. Notice
that this time, avenue.quark tagged all the paragraphs that use the

“Legal Text” paragraph style sheet.

Tagged document including legal text tagged as <parag_legal>

.4 Leave both the QuarkXPress Passport white paper document and the
new XML document open; you’ll continue to work with them in the

next section.

26

Tagging with Sequences and a New Rule

avenue.quark Tutorial

Tagging a Picture and Caption

The only important parts of the white paper that we haven’t tagged yet are the
picture and caption in the lower left corner of page 1. In this section, you’ll
add a new <illustration> element to the XML document, and then add the
picture and its caption to that element’s children.

.1 In the XML Workspace palette, scroll through the XML Tree list until
you can see the <head_L2> element that contains the word, “Benefits.”

.2 Control+click (Mac OS) or right+click (Windows) on this element to
display a pop-up menu. Choose Insert Sibling Before to display a sub-

menu, and then choose Insert With Preview. The Insert Sibling Before
dialog box is displayed.

The XML Tree pop-up menu lets you insert an item before the item selected in
the XML Tree list.

27

Tagging a Picture and Caption

avenue.quark Tutorial

.3 In the Items list, select illustration to indicate that you want to insert
an <illustration> element. The XML Tree Preview list displays a pre-

view of what the current branch of the XML document will look like after the
<illustration> element is inserted. Scroll through the XML Tree Preview list
down until you can see the bold <illustration> element.

The Insert Sibling Before dialog box lets you view any mandatory children of the
item you are inserting.

The XML Tree Preview list lets you view any mandatory children of the element
you want to insert. The mandatory children of the <illustration> element are
an <HTML:img> element and a <caption> element.

.4 Click OK. The <illustration> element is added before the selected
<head_L2> element.

28

Tagging a Picture and Caption

avenue.quark Tutorial

.5 In the XML Tree list, click the next to the <HTML:img> element to
display the src attribute associated with that element.

The newly-inserted <illustration> element has two children: an <HTML:img>
element and a <caption> element. The <HTML:img> element has an attribute
named src.

.6 Select the text box under the picture at the lower left on page 1. Then
select the Item tool e, press C (Mac OS) or Ctrl (Windows), and drag

the text box onto the element named <caption> in the XML Tree list. The
text of the caption is copied into the <caption> element.

.7 Select the picture box above the caption box. Then press C (Mac OS) or
Ctrl (Windows) and drag the picture box to the attribute named “src” in

the XML Tree list. The name of the picture file is copied into the <HTML:img>
element’s src attribute.

29

Tagging a Picture and Caption

avenue.quark Tutorial

H What just happened? You just told avenue.quark to put the picture file’s
name in the src attribute for the <HTML:img> element. Only the file name

was inserted, not the picture itself; this means the picture file must be in the
same folder as the XML file when it is viewed, or the picture won’t display in
the browser.

.8 Click the Save button on the XML Workspace palette, and save the
document in the “avenue.quark Tutorial” folder on your hard disk as

“MyDoc2.xml.” (Again, leave the Encoding pop-up menu set to UTF8 and
check Save XML as Standalone.)

Save button

.9 Use the procedure described in “Viewing your XML file with CSS style
sheets” (in the section named “Viewing Extracted XML Content —

Windows only”) to view “MyDoc2.xml.” Make sure the file named “diagram1.gif”
is in the same folder as “MyDoc2.xml” if you want the picture to be visible.

G Now you’ve seen a few of the things that avenue.quark can do. For more
information, see “A Guide to avenue.quark” (“Guide to avenue.quark.pdf”),

provided with the avenue.quark Tutorial.

30

Tagging a Picture and Caption

avenue.quark Tutorial

©2000 Quark Technology Partnership and Quark, Inc. as to the content and arrangement of this material.

All rights reserved.

©2000 Quark Technology Partnership and Quark, Inc. as to the technology. All rights reserved. U.S. and

foreign patents pending.

Quark, QuarkXPress, QuarkXPress Passport and QuarkXTensions are trademarks of Quark, Inc. and all

applicable affiliated companies, Reg. U.S. Pat. & Tm. Off., and in many other countries. Avenue.quark

and the Quark logo are trademarks of Quark, Inc. and all applicable affiliated companies.

Microsoft is a registered trademark of Microsoft Corporation.

All other trademarks are the properties of their respective owners.

31

	avenue.quark Tutorial
	Table of Contents
	Introduction
	Preparing to Use avenue.quark
	Using Rule-Based Tagging
	Viewing Extracted XML Content
	Adding a Rule to a Tagging Rule Set
	Combining Text Boxes Into a Sequence
	Tagging with Sequences and a New Rule
	Tagging a Picture and Caption

